Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Biomed Eng ; 68(5): 1569-1578, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33710951

RESUMO

The accurate classification of ambulation modes and estimation of walking parameters is a challenging problem that is key to many applications. Knowledge of the user's state can enable rehabilitative devices to adapt to changing conditions, while in a clinical setting it can provide physicians with more detailed patient activity information. This study describes the development and optimization process of a combined locomotion mode classifier and environmental parameter estimator using machine learning and wearable sensors. A detailed analysis of the best sensor types and placements for each problem is also presented to provide device designers with information on which sensors to prioritize for their application. For this study, 15 able-bodied subjects were unilaterally instrumented with inertial measurement unit, goniometer, and electromyography sensors and data were collected for extensive ranges of level-ground, ramp, and stair walking conditions. The proposed system classifies steady state ambulation modes with 99% accuracy and ambulation mode transitions with 96% accuracy, along with estimating ramp incline within 1.25 degrees, stair height within 1.29 centimeters, and walking speed within 0.04 meters per second. Mechanical sensors (inertial measurement units, goniometers) are found to be most important for classification, while goniometers dominate ramp incline and stair height estimation, and speed estimation is performed largely with a single inertial measurement unit. The feature tables and Matlab code to replicate the study are published as supplemental materials.


Assuntos
Caminhada , Dispositivos Eletrônicos Vestíveis , Eletromiografia , Humanos , Locomoção , Aprendizado de Máquina
2.
Comput Methods Biomech Biomed Engin ; 23(15): 1180-1189, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32654510

RESUMO

Marker-based motion capture presents the problem of gaps, which are traditionally processed using motion capture software, requiring intensive manual input. We propose and study an automated method of gap-filling that uses inverse kinematics (IK) to close the loop of an iterative process to minimize error, while nearly eliminating user input. Comparing our method to manual gap-filling, we observe a 21% reduction in the worst-case gap-filling error (p < 0.05), and an 80% reduction in completion time (p < 0.01). Our contribution encompasses the release of an open-source repository of the method and interaction with OpenSim.


Assuntos
Algoritmos , Movimento (Física) , Automação , Fenômenos Biomecânicos , Humanos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...